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Abstract

The trihelix transcription factor (TTF) gene family is an important class of transcrip-

tion factors that play key roles in regulating developmental processes and responding

to various stresses. To date, no comprehensive analysis of the TTF gene family in

large-scale species has been performed. A cross-genome exploration of its origin,

copy number variation, and expression pattern in plants is also unavailable. Here, we

identified and characterized the TTF gene family in 110 species representing typical

plant phylogenetic taxa. Interestingly, we found that the number of TTF genes was

significantly expanded in Chara braunii compared to other species. Based on the

available plant genomic datasets, our comparative analysis suggested that the TTF

gene family likely originated from the GT-1-1 group and then expanded to form other

groups through duplication or deletion of some domains. We found evidence that

whole-genome duplication/triplication contributed most to the expansion of the TTF

gene family in dicots, monocots and basal angiosperms. In contrast, dispersed and

proximal duplications contributed to the expansion of the TTF gene family in algae

and bryophyta. The expression patterns of TTF genes and their upstream and down-

stream genes in different treatments showed a functional divergence of TTF-related

genes. Furthermore, we constructed the interaction network between TTF genes and

the corresponding upstream and downstream genes, providing a blueprint for their

regulatory pathways. This study provided a cross-genome comparative analysis of

TTF genes in 110 species, which contributed to understanding their copy number

expansion and evolutionary footprint in plants.

1 | INTRODUCTION

Transcription factors (TFs) interact with cis-elements in the promoter

regions of their target genes and belong to a class of DNA-binding pro-

teins (Pei, Li, et al., 2021; Yu, Bai, et al., 2022). Currently, more than

60 TF families have been detected in plants (Zhang et al., 2022). The tri-

helix TF (TTF) gene family is one of the earliest TF families discovered in

plants (Xu et al., 2018). The TTF gene family has one or two typical trihe-

lix (helix–loop–helix–loop–helix) structures, which determine the spe-

cific binding of GT elements (Feng et al., 2019). TTF family genes are

divided into five subfamilies, GT-1, GT-2, GTγ, SIP1, and SH4, according

to the changes in their α-helical domains (Song, Wu, et al., 2016). It is

worth noting that GT-2 got its name because it contains two typical tri-

helix structures (Dehesh et al., 1992; Völz et al., 2018). TTF genes have

been reported to play multiple regulatory roles in plant growth and

development, for example, embryogenesis, flower development, and in

response to abiotic and biotic factors (Kaplan-Levy et al., 2012).

A previous study found that the earliest identified GT-1-binding

GT element was the promoter of the light-inducible gene rbcS-3A

(Green et al., 1987). Some other members of the GT-1 subfamily were

later discovered in Arabidopsis thaliana, Oryza sativa, and Setaria italia

(Kay et al., 1989; Le Gourrierec et al., 1999; Wang, Zhao, et al., 2018).
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The Arabidopsis PETAL LOSS (PTL) gene belongs to the GT-2 family and

can regulate the growth of petals and sepals (Lampugnani et al., 2012).

In O. sativa, OsGTγ-1, OsGTγ-2, OsGTγ-3, and OsGTγ-4 may be associ-

ated with cold, drought, and salt stress (Fang et al., 2010). The O. sativa

SHAT-TERING1 (SHA1) gene, encoding a SH4-type TF, plays an impor-

tant role in the activation of cell differentiation (Lin et al., 2007). Some

SIP1 genes have been shown to be involved in plant embryonic devel-

opment, leaf development and cell proliferation in Solanum lycopersicum

and A. thaliana (Barr et al., 2012; Kuromori et al., 2006).

Due to its importance for plant growth and development, the TTF

gene family has been identified and analyzed in several plants, includ-

ing Phyllostachys edulis (35 TTF genes) (Cheng, Xiong, et al., 2019;

Wang et al., 2019), O. sativa (41 TTF genes) (Win et al., 2017; Xiao

et al., 2019), Glycine max (71 TTF genes) (Liu, Zhang, Li, et al., 2020),

Brachypodium distachyon (27 TTF genes) (Wang et al., 2019), Medicago

truncatula (38 TTF genes) (Liu, Zhang, Ma, et al., 2020), Fagopyrum

tataricum (31 TTF genes) (Ma et al., 2019), Brassica rapa (52 TTF genes)

(Luo et al., 2017), Gossypium arboreum (52 TTF genes) (Mo

et al., 2019), Populus trichocarpa (56 TTF genes) (Wang et al., 2016),

S. lycopersicum (36 TTF genes) (Yu et al., 2018), S. italia (27 TTF genes)

(Wang, Zhao, et al., 2018), and A. thaliana (27 TTF genes) (Xu

et al., 2018). However, there is still a lack of research on the evolution-

ary function and structure of the TTF gene family in large-scale plants.

The aims of this study are as follows: (1) to identify and characterize

the TTF gene family in species representing different plant clades;

(2) describe their phylogenetic relationships, origins, and evolutionary

footprints; (3) explore the expression patterns of TTF genes at different

developmental stages, abiotic and biotic stresses based on transcrip-

tome data, and study the function of TTF genes; and (4) construct the

interaction network between TTF genes and their upstream and down-

stream genes to provide a blueprint for their regulatory pathway. We

believe that this comprehensive analysis will contribute to understand-

ing the evolutionary footprint and function of the TTF gene family.

2 | RESULTS

2.1 | Identification and characterization of the TTF
gene family

We systematically identified TTF genes in 110 representative species,

including 26 algae, 3 bryophyta, 2 pteridophyta, 3 gymnosperms,
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F IGURE 1 Comparative analysis of trihelix transcription factor (TTF) genes in representative plants. (A) Phylogenetic tree and number of TTF
genes for different species in typical taxa. (B) Heatmap of cluster analysis using the number of major transcription factors (TFs) in
18 representative species and Chara braunii. The number of TFs was transformed by log 2.
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2 basal angiosperms, 8 monocots, and 66 dicots (Table S1). These spe-

cies represent different branches in the plant phylogenetic tree.

After screening, only 7 of the 26 algae contained TTF genes

(Chromochloris zofingiensis, Chlorokybus atmophyticus, Klebsormidium

nitens, Chara braunii, Mesotaenium endlicherianum, Penium margarita-

ceum, Spirogloea muscicola). According to evolutionary history, as the

most primitive algae of these species, C. zofingiensis, belonging to the

Chlorophyceae, contained only one TTF gene (Figure 1A, Table S2).

C. atmophyticus and K. nitens contained 4 and 13 TTF genes, respectively

(Figure 1A, Table S2). Notably, C. braunii belonging to the Charophyceae

contained the most TTF genes among all species, with the number was

498 (Figure 1A, Table S2). Three more advanced algae were

M. endlicherianum, P. margaritaceum, and S. muscicola, which contained

seven, four, and five TTF genes, respectively (Figure 1A, Table S2). Other

land plants encode approximately 30–50 members (Table S2).

Using the same approach, we identified 62 other major TFs in the

genomes of C. braunii and 18 representative plants (Figure 1B).

The 18 species included 4 dicots (A. thaliana, S. lycopersicum, Vitis

vinifera, and B. rapa); 4 monocots (O. sativa, Ananas comosus, Kobresia

littledalei, and Zostera marina); 1 basal angiosperm (Amborella

trichopoda); 1 glymnopsperm (Gnetum montanum); 1 pteridophyta

(Selaginella moellendorffii); 1 bryophyta (Physcomitrella patens); and

6 green algae. The number of TTF genes in C. braunii accounted for

58.4% of its total TF (Figure S1A). We found lower numbers of other

TFs per family in C. braunii than in land plants, with the TTF gene

family being an exception (Figure 1B, Figure S1B, Table S3). The

results showed that the TTF gene family was significantly expanded in

C. braunii compared to other plants, even all higher plants.

2.2 | Phylogenetic and classification analysis of
TTF genes

To classify specific TTF genes for each species, we constructed phy-

logenetic trees between each species examined and A. thaliana. The

TTF genes in most species were classified into five groups (GT-1,

GT-2, GTγ, SH4, SIP1) based on bootstrap values and phylogenetic

topology (Table S2). However, the GTγ group was absent in algae

(Table S2). In the other two lower plants, bryophyta and pterido-

phyta, their TTF genes did not either contain the complete five

groups (Table S2). Nevertheless, there were five complete groups of

TTF genes in all gymnosperms, basal angiosperms, monocots, and

dicots (Table S2). This result indicates that the TTF genes might have

undergone evolutionary differentiation in the structure or function

of higher plants. This evolutionary differentiation might be necessary

for the development and growth of higher plants. In addition, the

Ka/Ks analysis in TTF orthologs and the whole genome orthologs

showed that the TTF gene family genes have undergone more obvi-

ous evolution than the whole genome genes. Therefore, the TTF

gene family may play an important role in the plant during evolution

(Figures S2 and S3).

Phylogenetic analysis showed that the vast majority of C. braunii

TTF genes did not belong to the five previously defined clades

(Figure 2A, Figure S4, Table S2). To demonstrate the evolutionary

relationship of TTF genes, we constructed a comprehensive phyloge-

netic tree using the selection of 18 representative plants from differ-

ent taxa (Figure 2B). The results showed that the GT-1 group was

divided into 2 distinct subgroups (GT-1-1 and GT-1-2). The TTF genes
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F IGURE 2 Phylogenetic relationship of trihelix transcription factor (TTF) gene family. Phylogenetic tree topology was generated via IQTree2.
For major nodes, bootstrap values greater than 50% were shown. Different colors indicated groups obtained by bootstrap values and
phylogenetic topology. (A) Phylogenetic tree of Chara braunii. (B) Phylogenetic tree of 18 representative species.
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of C. zofingiensis belonged to GT-1-1. The GT-2 group was further

divided into four subgroups, corresponding to GT-2-1 to GT-2-4

(Figure 2B).

2.3 | Conserved motif analysis of TTF genes to
explore origin and evolution pattern

The most conserved 10 motifs (M1–M10) were detected by the

MEME program to explore further the origin and evolution of

TTF genes (Figure 3A, Figure S5). We found specific preservation

and expansion of motifs in different groups. As a result, all genes

had M1 and M2, while the other eight motifs were only present

in some groups (Figure 3A). For example, M3 existed only in

GT-2-3 and GT-2-4 groups; M6, M7, and M8 only existed in

GT-2-2 group; M9 was only present in the GTγ group, and M10

was only present in the GT-1-2 group (Figure 3A). Of all the

groups, only the GT-2 group had two M1. With exception of

GT-2-4, the GT-2 group did not have a complete double M2,

M4, and M5. In GT-2-3, only M1 corresponded to the trihelix

domain. Therefore, we speculated that M1 was an important

factor leading to the trihelix.

More importantly, according to the conserved motifs and evo-

lutionary trajectory, we found that the most primitive TTF genes

of C. zofingiensis belonged to GT-1-1 (Figure 3B). Phylogenetic

analysis also showed that the TTF genes were derived from

GT-1-1 (Figures 2A and 3A). This phenomenon indicated that the

TTF gene family might have originated from the GT-1-1 group and

expanded to form other groups by duplication or deletion of some

motifs (such as M6–M10). We annotated information on the old-

est species present in each group (Figure 3B, Table S2). It was

worth noting that GT-1-1, GT-1-2, SH4, SIP1, GT-2-1, and GT-2-3

belonged to primitive algae, while GTγ exclusive, including M9,

first appeared in gymnosperms. We speculated that M9 might play

an important role in the development and resistance of higher

plants.
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2.4 | Different expansion mechanisms of TTF
genes in lower and higher plants

Here, we detected five types of gene duplications, including singleton,

dispersed, proximal, tandem, and whole-genome duplication (WGD)

or segmental duplication, using the Multiple Collinearity Scan toolkit

(MCScanX) program (Figure 4A,B, Tables S4–S8). TTF genes were

underrepresented (P-value <0.05) among the singleton duplication

genes in 39 species (Figure 4D, Table S4). Dispersed duplication genes

and proximal duplication genes were significantly enriched (P-value

<0.05) compared with genome-wide levels in algae and bryophyta

(Figure 4C, Tables S5 and S6). No duplicated type contributed to the

expansion of gene families in pteridophyta (Figure 4C, Tables S4–S8).

The no different duplicated type of TTF gene numbers in each species

taxonomy is also shown (Figure 4E). TTF genes were significantly

enriched (P-value <0.05) in gymnosperms for duplication of dispersed

genes, proximal genes, and WGD genes (Figure 4C, Tables S5, S6, and

S8). In basal angiosperms and monocots, only WGD genes were sig-

nificantly enriched for TTF genes (P-value <0.05) (Figure 4D,

Table S8). In 12 of the 66 dicots, TTF genes were also enriched (P-

value <0.05) for WGD genes (Figure 4D, Table S8). WGD accounted

for 60% of the dicot gene family expansion. We found evidence that

WGD contributed most to the expansion of this gene family in the

dicots, monocots and basal angiosperms, while dispersed and proximal

duplications contributed to the expansion in algae and bryophyta.

2.5 | Comparative expression pattern analysis of
A. thaliana and C. braunii TTF genes

Their expression at different developmental stages and various stress

treatments was compared to examine functional divergence in TTF

genes. The normalized expression values underwent log2 conversion.

Among the 27 TTF genes in A. thaliana, 22 were detected in different

developmental stages (e.g., embryogenesis, flower development)

and responses to abiotic and biotic factors (Figure 5A–C). Most genes

in the SIP1 and GT-2 groups showed higher expression at

different developmental stages, except AT2G38250 and AT5G01380

(Figure 5A, Table S9). Furthermore, the highest expression of

AT1G33240 was observed at flowering, leaf and rosette leaf stages

(Figure 5A, Table S9). AT2G38250 and AT5G01380 were highly

expressed in botrytis cinerea and pseudomonas syringae under biotic

stress treatments (Figure 5B, Table S10). A similar result was also

found in S. lycopersicum (Figure S6). Among abiotic stress treatments,

AT2G38250, AT5G01380, and AT3G10040 were highly expressed in

different treatments, such as cold, osmotic, salt, drought, genotoxic,

oxidative, ultraviolet-B, wounding, and heat (Figure 5C, Table S11).

The results showed that AT2G38250, AT5G01380, and AT3G10040

might be closely related to abiotic and biotic factors. Other TTF genes

might be involved in growth and development.

The expression data of C. braunii involved four tissues, including

archegonia, antheridia, zygotes and whole plant (Figure 5D,

Table S12). Among the 498 TTF genes in C. braunii, only 229 genes

with the expression values were detected. However, these genes also

had distinct expression patterns in the four tissues, with some genes

showing tissue-specific expression (Figure 5D). To understand the

homology of the A. thaliana and C. braunii TTF genes, Blastp was used

to find the best match (E-value <1 � 10�5, identity >40%). After filter-

ing, a total of 22 C. braunii genes best-matched A. thaliana (Figure 5D,

Table S13). As a result, only genes in the SIP1 group did not have any

best matches (Figure 5D, Table S13). Notably, the best match for gene

g29889 (the gene ID in the C. braunii genome) was AT1G33240

(GT-2), and the gene pair was more than 50% identical (Table S13).

Furthermore, g29889 was highly expressed in all four tissues

(Figure 5d). Meanwhile, AT1G33240 (GT-2) had the highest expres-

sion across the entire developmental map (Figure 5D). This result

might indicate that the two genes might have similar functions. Based

on the homologous gene relationship with Arabidopsis, it will help us

to further explore the function of corresponding genes in C. braunii.

2.6 | Construction of regulatory network to
explore TTF gene functions

Comparative analysis of expression patterns and construction of regu-

latory networks will provide very favorable support for studying trihe-

lix gene functions in A. thaliana and other related species. First, we

obtained the upstream and downstream genes of the A. thaliana TTF

gene family using the iGRN database. Then, an interaction network

was constructed between each TTF gene and the corresponding

upstream and downstream genes to uncover their regulatory path-

ways (Figures S7–S10, Tables S14–S18). For example, we detected

580 upstream and 1245 downstream regulatory interactions in the

GT-2 group (Figure 6A,B, Table S14). The green dots represented all

genes, and the TTF genes have been marked. The red line represents

the upstream regulatory genes of TTF, and the green link represents

the downstream regulatory genes of TTF genes. Furthermore, we con-

ducted enrichment analysis (P-value <0.05) for the families of

upstream and downstream genes involved in the network. Among the

downstream genes, no common enriched family existed for each

F IGURE 4 Plant phylogeny and enrichment analysis of each duplicated type of trihelix transcription factor (TTF) genes. (A) Each duplicated
type is shown with a solid circle, and the significance levels relative to the genome-wide mean were shown in different colors, enriched (orange,
P < 0.05), depleted (blue, P < 0.05), or not significantly difference (gray). (B) Proportion of each significantly enriched or depleted duplicated type
in total copy type. (C) Species number of enriched duplicated type of TTF genes in each species taxonomy. (D) Species number of depleted
duplicated type of TTF genes in each species taxonomy. (E) Species number of no different duplicated type of TTF genes in each species
taxonomy.
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group. Among upstream genes, SRF-TF was a common enriched fam-

ily in all groups (Figure S11, Tables S19–S23). AP2 was enriched in

GT-2, GT-1, SIP1, and SH4 (Figure S11, Tables S19–S22). Each group

also had unique enriched families (Figure S11, Tables S19–S23). These

results indicated that they might play a more central role in regulatory

networks. In the analysis of cis-acting elements of all related genes, we

found that they had more MYC, MYB, ABRE, ARE, and ERE elements in

the upstream and downstream genes (Figure 6C, S4C, S5C, S6C, S7C,

Tables S24–S28). Most of these cis-acting elements were related to

resistance, indicating that TTF genes were closely related to resistance.

We drew a Venn diagram of the upstream and downstream genes

of these five groups of the TTF gene family (Figure 6D,E). Among the

five groups of upstream genes, there were a total of 5 genes

(AT5G13790, AT1G69120, AT3G54340, AT1G24260, AT5G20240)

(Table S29). We found that five common upstream genes were also

associated with plant development and responses to abiotic and biotic

factors according to the expression pattern analysis (Figure S12).

Expression pattern analysis showed that AT5G20240 was highly

expressed across the entire abiotic stress profile (Figure S12A,

Table S30). AT1G69120, AT3G54340, AT1G24260, and AT5G20240

had higher expression during flower development (Figure S12B,

Table S31). Especially, AT3G54340 and AT1G24260 were also

expressed at the seed stage (Figure S12B, Table S31). AT1G69120,

AT3G54340, AT1G24260, and AT5G20240 had higher expression

across the entire biotic stress profile (Figure S12C, Table S32).

Among the downstream genes, there were a total of 24 genes in

common (Figure S13, Table S33). Among these 24 genes, 22 genes were

detected to be expressed. Expression pattern analysis showed that genes

in group2 had the highest expression across the entire abiotic stress pro-

file (Figure S13A, Table S34). Genes of group1 and group2 were highly

expressed on the developmental map (Figure S13B, Table S35). In addi-

tion, the genes of group2 were highly expressed on the biotic stress map

(Figure S13C, Table S36). All these phenomena indicated that the most

common genes might be related to their common biological functions.

3 | DISCUSSION

The primitive ancestor of green plants came into contact with land about

500 million years ago and is thought to have evolved from a class of algae

in streptophyta (Virtanen et al., 2020). The diversity of streptophyta is

very large, of which C. braunii is considered to be the most closely related

to terrestrial plants (Martin & Allen, 2018; Wang, Li, et al., 2020).

C. braunii is the only algae with a tissue-like structure that can differenti-

ate into root-like protrusions anchored on solid substrates (Nishiyama

et al., 2018). Furthermore, C. braunii has a unique xylan synthase for cell

wall biosynthesis, a phragmoplast (cell separation) mechanism similar to

land plants and many phytohormones (Beilby, 2019; Nishiyama

et al., 2018). Similar to land plants, C. braunii plastids are controlled by ret-

rograde signals, with more refined transcriptional regulation than other

algae (Bonnot et al., 2019). TTF genes have been reported to play multiple

regulatory roles in plant growth and development, as well as response to

abiotic and biotic factors (Song, Wu, et al., 2016; Wang et al., 2017).

In our study, most algae contained TTF genes belonging to strep-

tophyta. Among them, C. braunii contained the most TTF genes (498)

in all lower and higher plants. Moreover, over 50% of TFs in C. braunii

belonged to the TTF gene family. Therefore, we speculated that the

expansion of the TTF genes in C. braunii might be related to the inde-

pendent evolution of its morphological complexity. In addition,

depending on the function of TTF genes, they might provide a solid

foundation for species responses to abiotic and biotic factors during

the transformation of aquatic plants to terrestrial plants. Interestingly,

our analysis showed that more than half of the TTF genes in C. braunii

had no detectable expression using available RNA-seq datasets. This

phenomenon indicated that although the TTF gene family had a mass

outbreak in number, many genes still did not play their corresponding

functions. This phenomenon was also consistent with previous

reports that duplicated genes were neo-functionalization, sub-

functionalization, and lost to reduce gene redundancy (Birchler &

Yang, 2022).

Duplicated type identification analysis of the TTF family indicated

that the expansion and evolution mechanisms were different in lower

and higher plants (Song et al., 2020). Previous studies have shown

that in the absence of WGD, gene family expansions resulted from

gene duplication and differential loss for most lower plants (Adams &

Wendel, 2005; Rieseberg et al., 2003). In lower plants, we found that

dispersed duplication and proximal duplication played a greater role in

the expansion of the TTF genes. The TTF genes of C. braunii were sig-

nificantly enriched for dispersed duplication genes at the genome-

wide level, which directly contributed to the expansion of its TTF

genes. But for S. muscicola, all 5 TTF genes were derived from WGD

because it underwent a whole-genome triplication, according to a pre-

vious report (Cheng, Xian, et al., 2019).

WGD/T played a greater role in the expansion of TTF genes in

higher plants. These findings suggested that expansion of the TTF

genes in a wide range of higher plants might be associated with poly-

ploidization. Many WGD/T events were distributed in angiosperms and

might lead to gene expression and epigenetic remodeling changes,

which might provide variability that allowed rapid adaptation to new

environments (Hegarty & Hiscock, 2007; Taylor & Raes, 2004).

Genes containing the conserved domain of SRF-TF were called

MADS-box genes, which were involved in plant floral organ develop-

ment and regulation of flowering time (Wang, Chen, et al., 2018).

Among upstream genes, SRF-TF was a common enriched family in

each group. In our analysis of expression patterns in A. thaliana, some

genes were highly expressed in the developmental map. This result

was consistent with previous studies (Kaplan-Levy et al., 2014; Xu

et al., 2018). The expression of these genes in different developmental

stages and tissues could help us understand their specific functions.

Genes containing conserved domains of AP2 have been implicated in

the induction of various physiological and biochemical signals, such as

disease and stress resistance (Feng et al., 2020; Song et al., 2013;

Song, Wang, et al., 2016). Among upstream genes, AP2 was enriched

in GT-2, GT-1, SIP1, and SH4. In conclusion, we preliminarily explored

the function of TTF genes based on gene expression data of Arabidop-

sis and C. braunii.
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4 | MATERIALS AND METHODS

4.1 | Retrieval of genome sequences

We collected genome sequences from 110 plants representing

different branches in the plant phylogenetic tree according to

plaBiPD (https://www.plabipd.de/plant_genomes_pn.ep), TVIR

database (http://tvir.bio2db.com) (Yu, Ma, et al., 2022), and TBGR

database (http://www.tbgr.org.cn) (Liu et al., 2022). These species

included 26 algae, 3 bryophyta, 2 pteridophyta, 3 gymnosperms,

2 basal angiosperms, 8 monocots, and 66 dicots. Genome-related

datasets for these species were downloaded from several data-

bases, such as NCBI (https://www.ncbi.nlm.nih.gov), Phytozome

(https://phytozome-next.jgi.doe.gov), Ensembl Plants (http://plants.

ensembl.org/index.html), and other related databases (Table S1).

4.2 | Identification and characterization of the TTF
gene family

To identify putative TTF family members, the hidden Markov model

profile of TTF (PF13837) was obtained from the Pfam (version 35.0)

database (http://pfam.xfam.org/) (El-Gebali et al., 2019). Then, it was

used to identify the putative TTF gene family with a threshold of

E-value <1e-5 (El-Gebali et al., 2019; Pei, Yu, et al., 2021). The

retrieved TTF candidates were further validated by SMART and con-

served domain database with a threshold of E-value <1e-5 (Letunic

et al., 2012; Marchler-Bauer et al., 2015).

4.3 | Sequence alignment and phylogenetic
analysis

Multiple sequence alignments were performed using MUSCLE (ver-

sion 3.8.31) with default parameters (Edgar, 2004). Based on the

sequence alignment, the neighbor-joining method was used to con-

struct the TTF gene phylogenetic tree by IQTree2 (version 1.6.2), and

the Bootstrap value was set to 1000 (Minh et al., 2020). Single-copy

ortholog sequences were identified using OrthoFinder (v2.2.7,

https://github.com/davidemms/OrthoFinder/releases) to construct

species trees (Emms & Kelly, 2019). MEME (version 5.3.3) was used

to search for conservative motifs, and the number of motifs was set

to 10 (Bailey et al., 2009).

4.4 | Identification of gene collinearity and specific
duplication events

MCScanX was used for gene collinearity with default parameters,

according to a previous report (Wang et al., 2012). A program (duplica-

te_gene_classifier) in MCScanX was used to infer different types of

duplicated genes (Song, Sun et al., 2021; Song, Wei et al., 2021). We

extracted TTF genes located in collinear blocks by Perl script. Then, chi-

square test was used to determine whether the TTF gene family was

significantly enriched (P-value <0.05) in a specific duplication event.

4.5 | TTF gene expression analysis of C. braunii and
A. thaliana

We performed TTF gene expression analysis in C. braunii using RNA-

seq data reported previously (Nishiyama et al., 2018). These data were

obtained from four tissues, including archegonia, antheridia, zygotes,

and whole plants of C. braunii. Fragment per kilobase of transcript per

million fragments mapped values were used to normalize gene expres-

sion. The expression analysis data of A. thaliana TTF genes under abi-

otic stress treatment, biotic stress treatment and developmental map

were extracted from eFP browser (http://bar.utoronto.ca/efp_

arabidopsis/cgi-bin/efpWeb.cgi) (Adams & Wendel, 2005). The

expression data include biotic stress and abiotic stress. Biological

stress includes insect pests and bacterial infection. Abiotic stresses

include drought, flood, salinity, mineral deficiency, and adverse

pH. Data were normalized by the Genetic Counseling Outcome Scale

method (Grant et al., 2019). The heatmap package (https://cran.r-

project.org/web/packages/pheatmap/index.html) of R was used to

draw expression heatmap (Wang, Hu, et al., 2020).

4.6 | Construction of regulatory networks in
A. thaliana

The upstream and downstream genes of the A. thaliana TTF genes

were derived from iGRN (http://bioinformatics.psb.ugent.be/

webtools/iGRN/) (De Clercq et al., 2021). The interaction network of

these genes was constructed using Gephi software (https://gephi.org)

(Amith et al., 2019). Venn diagram (http://bioinformatics.psb.ugent.

be/webtools/Venn/) was used to show their overlapping relationship

according to previous report (Song, Li, et al., 2021).

4.7 | The cis-acting elements analysis of TTF-
related genes in A. thaliana

To illustrate the functions of upstream and downstream genes,

TBtools software was used to take the translation initiation codon of

the upstream 2Kb (Chen et al., 2020). In addition, PlantCare (http://

bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to

identify cis-acting elements 2Kb upstream of the translation initiation

codon (Lescot et al., 2002). Pfam (version 34.0) was used to identify

families of these genes (Finn et al., 2014). Furthermore, the Python

script was used to perform enrichment analysis (Virtanen et al., 2020).

The P-values obtained by the significance analysis were further cor-

rected using the Bonferroni method of the R program (Virtanen

et al., 2020). Corrected P-values (q-values) <0.05 and fold-changes >2

were used to define significant enrichment terms according to previ-

ous report (Song, Hu, et al., 2021).
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