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RNA N%-methylguanosine (m2G) is one kind of posttranscrip-
tional modification and plays crucial roles in the control and
stabilization of tRNA. However, our knowledge about the bio-
logical functions of m2G is still limited. The key step of
revealing its new function is to recognize the m2G sites in the
transcriptome. Since there is no effective method for detecting
m2G sites, it is desirable to develop new methods to identify
m2G sites. In this study, a computational predictor called
iRNA-m2G was proposed to identify m2G sites in eukaryotic
transcriptomes. In iRNA-m2G, the RNA sequences were en-
coded by using nucleotide chemical property and accumulated
nucleotide frequency. iRNA-m2G was not only validated by the
rigorous jackknife test on the benchmark dataset but also
examined by performing cross-species validations. In addition,
iRNA-m2G was also tested on an independent dataset. It was
found that the accuracies obtained by iRNA-m2G were all quite
promising in these tests, indicating that the proposed method
could become a powerful tool for identifying m2G sites.
Finally, a user-friendly web server for iRNA-m2G is freely
accessible at http://lin-group.cn/server/iRNA-m2G.php.

INTRODUCTION

Since the first posttranscriptional modification was discovered in
tRNA nearly 60 years ago," more than 100 kinds of RNA modifications
have also been found in tRNA. Besides N°-methyladenosine,”
5-methylcytosine,” pseudouridine,’ and N'-methyladenosine,” N*-
methylguanosine (m2G) has also been identified in tRNA of eukary-
otes and archaea.*’

The formation of m2G was catalyzed by the rRNA guanine-(N?)-
methyltransferases that methylate the amino group at the C-2 posi-
tion of guanine.'’ Through forming canonical or non-canonical Wat-
son-Crick base-pairing interactions with other bases,'' m2G plays key
roles in the control and stabilization of the tertiary structure of
tRNA.'*"* In addition, it has also been reported that m2G could
act as the kinetic barrier for reverse transcription.''

Compared with the other kinds of RNA modifications, our knowledge
about the function of m2G is still in its infant stage. In order to reveal
its novel biological functions, the key point is to accurately detect the
positions of m2G sites in the transcriptome. Since there are no high-
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throughput methods for detecting m2G sites at present, it is necessary
to develop an effective method for the accurate identification of m2G
sites.

Keeping this in mind, in the present work, we proposed a computa-
tional method, called iRNA-m2G, to identify m2G sites in eukaryotic
transcriptomes. In both the jackknife test and the independent dataset
test, iRNA-m2G yielded promising predictive performances for the
detection of m2G sites. For the convenience of the scientific commu-
nity, a web server for iRNA-m2G is established and is freely available
at http://lin-group.cn/server/iRNA-m2G.php.

RESULTS AND DISCUSSION

Nucleotide Composition Analysis

In order to find the nucleotide composition bias of m2G-site-contain-
ing sequences, the Two Sample Logo software'* was used to calculate
the differences between m2G-site-containing sequences and non-
m2G-site-containing sequences. The statistically significant (p < 0.05,
two-sample t test) nucleotides surrounding m2G sites are indicated in
Figure 1. The conserved consensus motif UGGC located at positions
—2 to 1 was found in H. sapiens, M. musculus, and S. cerevisiae. In addi-
tion, the position-specific enrichment of nucleotides was also observed
both upstream and downstream of the m2G site. For example, the G
was enriched at positions 9, 1, 8, and 9; the C was enriched at posi-
tions 7 and 1; the U was enriched at positions — 2, 6, and 10; the A was
enriched at positions 4 and 10. These position-specific enrichments of
nucleotides appeared in all three species (Figures 1B-1D).

In addition to the aforementioned common pattern, the species-spe-
cific nucleotide composition bias was also observed. The enrichment
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of two consecutive nucleotides U and C at positions 2 and 3 were
found in H. sapiens and M. musculus (Figures 1B and 1C). The three
consecutive Gs were observed at positions —5, —4, and —3 in
M. musculus (Figure 1C). The enrichment of A in the upstream region
from 20 to 13 relative to the m2G site was observed in S. cerevisiae.
It was also observed that, at position 18 in the downstream sequence,
U was enriched in H. sapiens and C was enriched in S. cerevisiae. The
observed nucleotide bias might be the signal for methyltransferases to
recognize their targets and also suggest that it is reasonable to identify
m2G sites based on the sequence-derived information.

Window Size Optimization

Considering the position-specific nucleotide bias, in order to obtain
effective information for identifying m2G sites, it is necessary to
determine the optimal window size of the flanking sequences around
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The model thus obtained is called iRNA-m2G,
where “i” stands for “identify” and “m2G” stands
for “N*-methylguanosine.” To demonstrate its
performance, the iRNA-m2G was evaluated by
using the jackknife test, in which iRNA-m2G ob-
tained an accuracy of 95.80% with the sensitivity
0f 93.00%, specificity of 98.60% and MCC of 0.92.

Robustness and Stability Analysis

In order to measure the robustness and stability
of the proposed model, the following experi-
ments were carried out. Based on the samples
from H. sapiens, M. musculus, and S. cerevisiae,
we first built species-specific models and vali-
dated their performances by using the jackknife
test. The results thus obtained are reported in
Table 1. As indicated in Table 1, the accuracies of the species-specific
models for identifying m2G sites were 94.56%, 100%, and 96.27% in
H. sapiens, M. musculus, and S. cerevisiae, respectively. The area
under the receiver operating characteristic curve (ROC) that was
used to objectively quantify a computational model was also
provided.

To demonstrate to what extent a species-specific model can identify
the m2G sites from other species, we evaluated the species-specific
model on the data from other species. The results are indicated in Fig-
ure 3. It was found that the H. sapiens-based model can accurately
identify the m2G sites in M. musculus with the accuracy of 96.67%,
while its accuracy for identifying m2G sites in S. cerevisiae is
88.80% lower than that obtained by the model trained by using the
data from S. cerevisiae itself. The accuracies of M. musculus- and
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Figure 2. Predictive Performance of the Models based on Different Window
Size

S. cerevisiae-specific models for identifying m2G sites in H. sapiens
are 77.17% and 80.43%, which are still acceptable.

In addition, to illustrate that the predictive accuracy of iRNA-m2G is
not sensitive to the selection of negative data, the proposed method
was further evaluated on the benchmark dataset S,. In the jackknife
test, our method obtained an accuracy of 98.85%, with the sensitivity
0f 90.21%, specificity of 99.83%, and MCC of 0.93. It can be concluded
that, even based on the dataset with the positive-to-negative ratio of
approximately 1:9, the predictive accuracy of our method is still com-
parable with that based on dataset S,. All these results demonstrated
the robustness of the proposed method.

Web Server

Since user-friendly web servers represent the future direction for
developing useful predictors,’”” '* to enable the applications of the
proposed method, a publicly accessible web server for iRNA-m2G
was established, which is available at http://lin-group.cn/server/
iRNA-m2G.php, through which users can detect the m2G sites in
transcriptomes. The user guide on how to use it is given as follows:

Step 1. Visit the homepage of iRNA-m2G at http://lin-group.cn/
server/iRNA-m2G.php.
Step 2. Either type or copy or paste the query RNA sequences with

a length greater than 41 nt in FASTA format. The format of the
input sequences can be found by clicking the “Example” button.

Step 3. After clicking the “Submit” button, the results will be
shown on the screen.

Conclusions

In this study, we developed a predictor called iRNA-m2G to identify
m2G sites in H. sapiens, M. musculus, and S. cerevisiae in which the
RNA sequences were encoded by using nucleotide chemical property
and accumulated nucleotide frequency. To the best of our knowledge,

iRNA-m2G is the first computational method for this aim. The jack-
knife test results demonstrated that iRNA-m2G is promising for iden-

tifying m2G sites.

The iRNA-m2G was also evaluated by performing cross-species val-
idations. Although the accuracies of the cross-validation tests are a lit-
tle lower, they are still acceptable. The lower accuracies of cross-spe-
cies validations may be due to the limited number of samples in each
species, which are too few to yield enough information to train robust
models.

To demonstrate its robustness for identifying m2G sites, the method
was further validated on an independent dataset with a positive-to-
negative ratio of approximately 1:9. The jackknife test results obtained
based on the independent dataset were also quite good, indicating that
iRNA-m2G is robust and is useful for identifying m2G sites. In the
future, we will collect m2G sites from different species to further
improve the performance of iRNA-m2G.

MATERIALS AND METHODS

Benchmark Datasets

The positive samples (m2G-site-containing sequences) of H. sapiens,
M. musculus, and S. cerevisiae were collected from the RMBase
database” and were all 41 nt long, with the m2G site at the center po-
sition. In order to construct a high-quality benchmark dataset, the
CD-HIT software”’ was used to remove the samples with sequence
similarity greater than 90%. If the sequence similarity threshold is
set to a lower value, such as 60%, the dataset will be more objective
and reliable. However, in this study, such a stringent criterion was
not used; otherwise, the number of samples would be too few to
have statistical significance. Finally, we obtained 46, 30, and 67
m2G-site-containing sequences in H. sapiens, M. musculus, and
S. cerevisiae, respectively.

Considering the fact that m2G modifications were mainly found in
tRNA,” the negative samples (non-m2G-site-containing sequences)
of H. sapiens, M. musculus, and S. cerevisiae were collected from
their tRNA sequences, which are available at the GtRNAdb
database.”” By obeying the aforementioned procedures, 555, 444,
and 247 negative samples were obtained for H. sapiens,
M. musculus, and S. cerevisiae. These 1,246 sequences were also
41 nt long, with the guanine at the center, and have the similarity
of less than 90%.

In order to objectively evaluate the proposed method, we built two da-
tasets; namely, dataset S, and dataset S,. S, is a balanced dataset
including the aforementioned 143 m2G-site-containing sequences
and 143 non-m2G-site-containing sequences randomly selected
from the negative samples of each species (46, 30, and 67 from
H. sapiens, M. musculus and S. cerevisiae, respectively). S, is an imbal-
anced dataset with a positive-to-negative ratio of approximately 1:9,
which includes 143 m2G-site-containing sequences and 1,246 non-
m2G-site-containing sequences. These datasets are available at
http://lin-group.cn/server/iRNA-m2G/data.htm.
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Table 1. Results of the Species-Specific Models for Identifying m2G Sites in Different Species

Species Parameters Sn (%) Sp (%) Acc (%) MCC auROC
H. sapiens C=2,¢=0.0078125 89.13 100.00 94.56 0.90 0.950
M. musculus C=2,¢=0.0078125 100.00 100.00 100.00 1.00 0.999
S. cerevisiae C =05, g=0.0078125 92.53 100.00 96.27 093 0.964

auROC, area under the receiving operating characteristic; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Matthews correlation coefficient.

Sequence Representation

In order to transfer the sequences in the benchmark dataset into
vectors that can be processed by machine learning methods, they
were encoded by using chemical properties and nucleotide fre-
quency.” *® A brief description of this encoding scheme is intro-
duced as follows.

Nucleotide Chemical Property

In terms of ring structures, A and G are purines containing two rings,
whereas C and U are pyrimidines containing one ring. When forming
secondary structures, C and G form strong hydrogen bonds, whereas
A and U form weak hydrogen bonds. In terms of amino or keto bases,
A and C belong to the amino group, while G and U belong to the keto

group.

Accordingly, three coordinates (x, y, and z) were used to represent the
chemical properties of the four nucleotides, and a value of 0 or 1 was
assigned to the coordinates. If x, y and z coordinates stand for the ring
structure, the hydrogen bond, and the amino or keto bases, the four
nucleotides can be represented in the cartesian coordinate system.
Therefore, the coordinates for A, C, G, and U are (1, 1, 1), (0, 0, 1),
(1, 0, 0), and (0, 1, 0), respectively.

H. sapiens M. musculus  S. cerevisiae

75%
H. sapiens
85%
M. musculus
95%
S. cerevisiae
100%

Figure 3. Heatmap Showing the Cross-Species Prediction Accuracies
Once a species-specific model was established on its own training dataset, it was
tested on the data from the other seven species.
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Accumulated Nucleotide Frequency

For the purpose of including nucleotide composition surrounding the
m2G sites, the density d; of nucleotide #; at position i was defined as
follows:

_ 1y [ 1 if m=q
di—m;f(nj), f("")‘{o other Jcases’ (1)

where [ is the sequence length, and |N;| is the length of the i-th prefix
string {ny, n,, ..., n; } in the sequence ge {A, C, G, U}.

By integrating nucleotide chemical properties and nucleotide fre-
quency, each nucleotide will be converted into a 4-dimensional vec-
tor, where the first three elements represent its chemical properties,
and the fourth one represents the accumulated nucleotide frequency.
Accordingly, an I-bp-long sequence will be encoded by a (4 x I)-
dimensional vector.

Support Vector Machine

The support vector machine (SVM) is a powerful and popular
method for pattern recognition and has been widely used in compu-
tational genomics and computational proteomics.”” *' In the present
work, the LIBSVM package v3.18 was used to implement the SVM al-
gorithm, which is available at http://www.csie.ntu.edu.tw/~cjlin/
libsvmm/. The basic idea of SVM is to transform the input data into
a high-dimensional feature space and then determine the optimal
separating hyperplane. Due to its effectiveness and speed in training
process, the radial basis kernel function (RBF) was used to obtain the
classification hyperplane. The grid search method was used to opti-
mize the regularization parameter C and kernel parameter y with
the following searching spaces: [275, 2] and [27'5, 277], with the
steps of 2 and 27, respectively. The probability score obtained
from SVM was used to make predictions. If the probability score ob-
tained from SVM was greater than 0.5, a guanosine will be predicted
as a m2G; otherwise, non-m2G.

Evaluation Metrics

In statistical prediction, three cross-validation methods—namely, in-
dependent dataset test, sub-sampling (or n-fold cross-validation) test,
and jackknife test—are often used to evaluate the anticipated success
rate of a predictor.’”” Among these tests, the jackknife test is deemed
the least arbitrary and most objective one.”” Accordingly, the jack-
knife test was used to examine the performance of the method pro-
posed in the present study. In the jackknife test, each sample in the
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training dataset is, in turn, singled out as an independent test sample,
and all the properties are calculated without including the one being
identified.

The performance of the proposed method was evaluated by using the
following four metrics—namely, sensitivity (Sn), specificity (Sp), ac-
curacy (Acc) and Matthews correlation coefficient (MCC)—which

are expressed as follows:™* *°

(

Sn x 100%

TP
“TP+EN
N
Sp=m x 100%
- IP+IN oow '
TP+ FN + TN + FP
MCC— (TP x TN) — (FP x FN)
| /(TP+FN) x (TP +FP) x (IN + FN) x (TN + FP)

Acc

2

where TP, TN, FP, and FN represent true positive, true negative, false
positive, and false negative, respectively.
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